Author Affiliations
Abstract
1 Photonics Research Group, Ghent University-IMEC, Ghent, Belgium
2 Center of Nano and Biophotonics, Ghent, Belgium
3 Electrical and Computer Engineering Department, University of California Santa Barbara, Santa Barbara, California 93106-9560, USA
We experimentally demonstrate extraction of silicon waveguide geometry with subnanometer accuracy using optical measurements. Effective and group indices of silicon-on-insulator (SOI) waveguides are extracted from the optical measurements. An accurate model linking the geometry of an SOI waveguide to its effective and group indices is used to extract the linewidths and thicknesses within respective errors of 0.37 and 0.26 nm on a die fabricated by IMEC multiproject wafer services. A detailed analysis of the setting of the bounds for the effective and group indices is presented to get the right extraction with improved accuracy.
Photonics Research
2018, 6(11): 11001008
Author Affiliations
Abstract
1 IDLab, Department of Information Technology, Ghent University-imec, Ghent, Belgium
2 Photonics Research Group, Department of Information Technology, Ghent University-imec, Ghent, Belgium
In this paper, a novel modeling and simulation method for general linear, time-invariant, passive photonic devices and circuits is proposed. This technique, starting from the scattering parameters of the photonic system under study, builds a baseband equivalent state-space model that splits the optical carrier frequency and operates at baseband, thereby significantly reducing the modeling and simulation complexity without losing accuracy. Indeed, it is possible to analytically reconstruct the port signals of the photonic system under study starting from the time-domain simulation of the corresponding baseband equivalent model. However, such equivalent models are complex-valued systems and, in this scenario, the conventional passivity constraints are not applicable anymore. Hence, the passivity constraints for scattering parameters and state-space models of baseband equivalent systems are presented, which are essential for time-domain simulations. Three suitable examples demonstrate the feasibility, accuracy, and efficiency of the proposed method.
Wavelength filtering devices Systems design Photonic integrated circuits 
Photonics Research
2018, 6(6): 06000560
Author Affiliations
Abstract
1 Photonics Research Group, Department of Information Technology, Center for Nano and Biophotonics, Ghent University imec, Ghent B-9000, Belgium
2 Department of Information Technology, Internet Based Communication Networks and Services (IBCN), Ghent University iMinds, Gaston Crommenlaan 8 Bus 201, B-9050 Gent, Belgium
3 Luceda Photonics, 9200 Dendermonde, Belgium
We demonstrate the use of stochastic collocation to assess the performance of photonic devices under the effect of uncertainty. This approach combines high accuracy and efficiency in analyzing device variability with the ease of implementation of sampling-based methods. Its flexibility makes it suitable to be applied to a large range ofphotonic devices. We compare the stochastic collocation method with a Monte Carlo technique on a numerical analysis of the variability in silicon directional couplers.
Integrated optics devices Integrated optics devices Probability theory Probability theory stochastic processes stochastic processes and statistics and statistics Waveguides Waveguides 
Photonics Research
2016, 4(2): 02000093

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!